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A self-consistent theory is presented for aggregates of neutral molecules. According to the LCAO 
Hartree-Fock formalism a set of effective Hartree-Fock equations for molecules in the aggregate is 
derived. The molecular orbitals of each molecule are to be determined from the effective H-F equation 
for the molecule in which the interactions between the molecule and the surrounding ones are included 
as an intermolecular interaction field (molecular field). A self-consistent treatment leads to the molecular 
orbitals which are self-consistent with the molecular field. By this method, the n-molecule problem 
becomes n times of one-molecule problem. 

Eine selbstkonsistente Theorie fiir Aggregate neutraler Molekiile wird entwickelt. Entsprechend 
der LCAO-Hartree-Fock-Theorie wird eine Reihe effektiver Hartree-Fock-Gleichungen fiir die 
Molektile des Aggregats abgeleitet. Die Molekiilorbitale sind aus den effektiven H-F-Gleichungen 
eines Molektils zu bestimmen, wobei die Wechselwirkungen mit den Nachbarmolekiilen als inter- 
molekulares Wechselwirkungsfeld (Molekiilfeld) beriicksichtigt werden. Die Molekiilorbitale werden 
selbstkonsistent beziiglich des Molektilfeldes berechnet. Nach dieser Methode wird das n-MolekiJl- 
problem zum n-fachen Einmolekiil-Problem. 

Introduction 

Since the L C A O  Har t ree -Fock  equat ion for a molecule were derived [1, 2], 
the molecular  orbital theory  including electron-electron interactions, which had 
not  been considered explicitly in the Hiickel theory, has been developed; in the 
theory, both  ab initio and semi-empirical calculations have often succeeded to 
estimate the transit ion energies or many  other electronic properties of molecules. 

On  the other hand, a considerable progress has been made in the theoretical 
t reatments for the electronic structures of molecular  crystals [3 -8 ]  based on the 
Hei t le r -London method.  In the H - L  method,  the zeroth-order  wave-function for 
a crystal is expressed as an ant isymmetrized or a simple product  of the wave- 
functions of isolated molecules. Moreover ,  in this method  the intermolecular 
interactions are in t roduced as per turbat ion to the Hami l ton ian  for the oriented 
gas model  in which the molecules do not interact one another.  In most  of the pre- 
vious articles [-3-16], the following approximate  treatments have been often 
taken:  

(1) The wave-functions for the consti tuent molecules are assumed to be 
or thogonal  one another,  or all the overlaps between the wave-functions of the 
molecules are neglected. 

(2) The exchange interactions between the molecules are often neglected in 
the numerical  calculation or even in the formulation.  

(3) In calculating the transit ion energies and the intensities of real optical 
transitions or other physical properties of molecular  crystals, the intermolecular  
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interaction terms are usually approximated as the dipole-dipole interaction terms, 
or at best the quadrupole-quadrupole terms are also considered. The higher order 
terms are neglected. 

(4) As the transition dipoles the values determined from the experimental 
oscillator strengths for the molecules are often used in the dipole-dipole approxi- 
mation method. Even if the transition dipoles are calculated by the conventional 
MO methods, the directions of the dipoles in the crystal are always assumed for the 
molecules with a high symmetry such as benzene and coronene. 

(5) Although the Davydov splittings of typical aromatic hydrocarbon crystals 
have been calculated and compared with the experimental findings [5-16], the 
spectral displacement 1, called D in Frenkel's and Craig's notation, is often neg- 
lected or at least not calculated directly from the theoretical method. 

(6) The configuration interactions to be considered between the configura- 
tions, which do not belong to the same irreducible representation in the free- 
molecule, are often restricted a few. 

In these respects more general and appropriate theoretical treatments should 
be required 2. 

It has been considered as a good approximation method to introduce the 
perturbation theory in the frame of the Heitler-London model as far as the inter- 
molecular overlap is small. However, in the case of large molecules, the dimension 
of molecule itself is often much larger than the nearest intermolecular distance 3, 
then this perturbation approximation method may not be appropriate one even 
if the intermolecular overlap is small. Therefore, it may be advisable that the 
electronic wave-function of the aggregate of large molecules should be described 
as a more appropriate antisymmetrized whole electron wave-function instead of 
the product of the wave-functions of the isolated molecules used in the previous 
articles [3-16]. 

In this paper a self-consistent theory for molecular aggregates is developed in 
which all the molecular orbitals can be determined self-consistently based on the 
many electron Hamiltonian including the intermolecular interactions explicitly. 
Once the SCF molecular orbitals for a molecular aggregate are given, we can 
start from more appropriate zeroth-order wave functions expressed as anti- 
symmetrized products of these orbitals. 

In Section ! a self-consistent method is presented for aggregates of neutral 
molecules. In this method, each one-electron orbital for a molecular aggregate 
can be described as a linear combination of atomic orbitals of a constituent 
molecule like a usual MO, since each electron in the molecular aggregate may be 
tightly bound around one of the molecules. Moreover, an antisymmetrized 
product of the one-electron orbitals of all the molecules in the aggregate is taken 
as an electronic configuration of the system. Then, according to the LCAO 
Hartree-Fock formalism [1, 2] a set of effective Hartree-Fock equations for the 

1 This term is a measure of the change in potential energy of interaction between a molecule and 
the surrounding molecules if this molecule is raised to an excited electronic state. 

2 In the recent work by Tanaka and Tanaka [8], most of these approximate treatments are not 
needed, and now their theoretical treatment seems to be one of the most acceptable ones. 

3 In benzene crystal, the diameter of molecule is about 5 A, while the nearest intermolecular 
distance is 2.75 A [171. 



Self-Consistent Molecular Field Theory 333 

molecules in the aggregate is derived, where the intermolecular overlap between 
atomic orbitals is completely neglected. The one-electron orbitals of every mole- 
cule are to be determined from the effective H - F  equation for the molecule in 
which the interactions between the molecule and the surrounding ones are included 
as an intermolecular interaction field (molecular field). A self-consistent treatment 
leads to the one-electron orbitals which are self-consistent with the molecular 
field (self-consistent molecular field). By this method the n-molecule problem 
becomes n times of one-molecule problem under the molecular field. Particularly 
for molecular crystals the n-molecule problem is reduced to just one-molecule 
problem under an equivalent molecular field. 

Starting from these SCF one-electron orbitals (not from the SCF orbitals of 
isolated molecules) the excited electronic states of molecular crystals are described 
in Section II according to the Frenkel-Pierles method [18-21]. One of the im- 
portant results in this section, which seems to be rather obvious, is that the con- 
figuration interaction matrix elements between the ground electronic configura- 
tion and the one-electron excitation ones are vanishing. Therefore, the ground 
state can be expressed by the ground electronic configuration alone. Furthermore, 
it will be shown that the calculations and the estimations of many physical pro- 
perties, which are peculiar to molecular crystals and not found in an isolated 
molecule, become facile using this method. 

For the numerical calculations of real systems semi-empirical methods are 
presented in Section III. At first, the K-electron approximation method is taken 
for the studies of the electronic transitions. Next, the all valence electron treatment 
is used to analyze the intermolecular interactions. 

In Section IV two main problems of this theory are discussed; (1) to what 
system the self-consistent molecular field method is applicable and (2) whether 
the calculation in the real SCF procedure can converge or not. 

I. Self-Consistent Molecular Field Method 

1. Hartree-Fock Equation and the Molecular Field 

According to the Born-Oppenheimer approximation [22], the total electron 
Hamiltonian operator for the N-molecule system is expressed in the form; 

h2 ~, 1 /~j e2 N q~ n~ Z n q e 2  

H -  2m V2 + 2 Z Z Z R,qi , (1) 
i=l " �9 r i j  n=l q=l i=l 

(i :~j) 
where e2/rij is the electrostatic repulsion between electrons i and j, Z~ is the 
nucleus charge on the q-th atom in the n-th molecule, and R,q~ is the distance 
between atom nq and electron i. Electronic wave-functions for the ne-electron 
system will be constructed from normalized antisymmetrized product functions 
of the type4; 1 

~p = ~ det [(q~l a) (q~l fi) (~b2 a)... I, (2) 

where q~ is the one-electron orbital and a or fl is the spin function. Since each 
electron in the molecular aggregate may be tightly bound around one molecule, 

4 Although the extension to an open-shell case is not so difficult, a closed-shell case in each 
molecule is only considered in this paper. 
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the appropr ia te  one-electron orbitals q~/may be taken to be o r thonormal  linear 
combinat ions  of a tomic orbitals X.~. on one molecule;  

4.i = ~ C,.q.X.qu , (3) 
q u  

where ~b.~ is the localized one-electron orbital  on the n-th molecule corresponding 
to the i-th M O  of a molecule in the familiar L C A O - M O  approximat ion  and X.q. 
is the p-th AO on the q-th a tom in the n-th molecule. Because of the small overlap 
between the molecules in molecular  aggregates, a following approximat ion  (com- 
plete neglect of in termolecular  overlap) may be taken 5; 

I Z.q. Z,.p~ dr - 6., ,. I Znq,,)~.p~ d r .  (4) 

Then, the partial  o r thogonal i ty  between the one-electron orbitals is obtained;  

S 4*hi 4mj dz = aij'5,,, m , (5) 

where a/j = 6~,j when the set of q~./is proper ly  determined. Using q~.~, the ground 
electronic configurat ion will be expressed in the scheme of Eq. (2) as follows; 

o c t  

~p0 = A [ I  ~b.,, , (6) 
nia 

where A is an ant isymmetr iza t ion  opera tor  permuting electrons and ~b,/, is a 
spin-orbital which is the p roduc t  of q~./and the spin function ~ or ft. The electrons 
are accommoda ted  in turn  into the lower orbitals as in the case of the usual M O  
theory. 

Under  the condition,  a/j = bid, the energy expectat ion value of the ground 
electronic configurat ions is given by the formula;  

oc t  oc r  

E ~ = 2 ~ H.i + ~ (2J.i,.i - K.imj) , (7) 
ni nimj 

where 

H . / =  I ~b*(1) - ~ m  V~ - E.n R,.~I / q~./(1) d z l ,  (S) 

e 2 

J.imj = ~ ~ ~b*i(1) ~b.i(1) ~ ,  -12 q~*j(2) ~b,.j(2) d z l d z 2 ,  (9) 

and 
e 2 

K./, . j  = ~ ~ ~,b*/(1) ~bmj(1 ) ~ q~*j(2) ~b./(2) dz 1 dz 2 . (10) 

The condition, a / j=  hi, j, leads to 
* n t 2 CinpuClnqvSp~tqv =1 ( i = l ,  ne and n = l , N )  6, (11) 

p ,ttq v 

where S;,q~ is the overlap integral;  
* (12) Spgqv = S Xnplt)~nqv dz ' "  

s This approximation is, on the other hand, based on the interpretation [23] that the atomic 
orbitals used in the semi-empirical molecular orbital theory should be considered as the orthogonalized 
atomic orbitals determined by the L6wdin's method 1-24]. Therefore, as far as the intermolecular 
overlap is not so large as an intermolecular bonding is made, this approximation may be valid, if the 
atomic integrals, such as two-electron repulsion integrals, are evaluated semi-empirically using the 
zero-differential overlap approximation. 

6 The symbol, n = 1, N, means that the n varies from unity to N. n'e denotes the number of electrons 
in the n-th molecule. 
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To determine the coefficients, C~.pu, the variation principle is used to lead a 
* (cf. Appendix), following equations; for the variation of Cznp. 

n n * _ _  C,.q~(Fpuq~ - e., Sv~,q~ ) 6 C,.p,, - 0 ,  (13) 
q 

where F~,uq ~ is an element of the n-th Fock matrix; 

F~,uq~ =I~m~+ Z Z ppmu','~'[(nppnqvlmp'p'mq'v') 
m p ' # ' q ' v '  (14) 

- �89 (np~mq'v'[mp'#'nqv)] . 
n Ppuq~ is a bond-order; 

o c r  

P,~q~ = 2 ~ * (15) n C i n p  # C i n q  v , 
i 

I"puq~-- J'Z*.(1) - ~ V~ - mq'Z ~7~, I Z.~(1) dzl (16) 

and e2 
(np#mqv [n'p'#'m'q'v') = ~ ~ Z*pu(1) Z~(1)  - -  

r 1 2  

(17) 
Z*p,u,(2) Zm'q'~'(2) dz , dz2 . 

l~,uq ~ is the Coulomb integral when pl~=qv, otherwise a resonance integral. 
(npl~mqvln'p'p'm'q'v') is the electron repulsion integral. Because of the arbitrary 
character of the variation set, a set of simultanious equations (Hertree-Fock 
equations for a molecular aggregate) is obtained, 

~, Ci.q~(F"vuq~ - e.iS"p~) = 0 (n -- 1, N). (18) 
qv 

One of these equations (the effective Hartree-Fock equation for a constituent 
molecule) is very similar to that of a molecule, but F~,u~ ~ depends upon the coeffi- 
cients of other molecules, Cimpu(m :[= n), SO that the equations (n = I,N) are not 
independent of each other. 

Although to solve the equations there arises a difficulty due to the non-linearity 
of Ci.q~,, if the Fock matrix elements are estimated by a set of C~.q~ assumed, the 
simultaneous equation becomes linear and feasible and then the equations are 
decoupled into seqular equations of the next form (the effective seqular equations 
for constitutent molecules); 

' n n - -  . det [Fpwtv - enSvwtv [ - 0 (n = 1, N) (19) 

Eq. (19) for the m-th molecule, which can be solved independently of other 
equations (n # m), determines the one-electron orbitals belonging to the m-th 
molecule. However, this equation differs from the similar equation for an isolated 
molecule, since Eq. (19) includes the intermolecular interactions as a field (mole- 
cular field). Thus, the concept of the molecular field is introduced. 

The general procedure to obtain the SCF solution or self-consistent molecular 
field is diagrammatized in Fig. 1. For the first step a set of Cinq, should be assumed. 
For the n-th molecule the coefficients can be given from the Htickel orbitals or the 
SCF molecular orbitals of the free molecule. If all the coefficients for the molecules 
in the aggregate are given, then all the Fock matrix elements (Eq. (14)) can be 
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Htickel MO or SCF MO 

of isolated molecules 

Assumed MO or starting MO 

1 
I C. n=l,N 

l i 

det/F" - e S"/= 0 

Self-consistent solution 

Fig. 1. Computational procedure to obtain a self-consistent solution 

determined.  Next,  the seqular  equa t ion  (Eq. (19)) for the n-th molecule  (one- 
molecule  p rob lem)  can be solved separa te ly  to  give the new coefficients for the 
molecule.  W h e n  all the equa t ions  are solved and  a new set of the coefficients are 
obta ined ,  the new F o c k  mat r ix  e lements  will be de t e rmined  to  solve the new 
seqular  equat ions .  This  p rocedu re  should  be repea ted  unti l  the cycle becomes  self- 
consistent .  

As shown above,  N-molecu le  p r o b l e m  is decoup led  into N t imes of one- 
molecule  p r o b l e m  7. However ,  the one-molecu le  p rob lems  should  be solved 
s imul taneously ,  so tha t  if N becomes  large the process  will be infeasible. 

In  the case of the molecu la r  crysta ls  where all the molecules  are equivalent  
under  the crystal  s y m m e t r y  ope ra t ions  in the g round  state, the F o c k  matr ices  
(n = 1, N) mus t  be m a t h e m a t i c a l l y  equivalent .  Then,  the N-molecu le  p r o b l e m  

7 Such decoupling is also derived when the one-electron orbitals in a crystal or a regular high 
polymer are expressed as linear combinations of basis sets constructed from the Bloch type sum of 
translationally equivalent atomic orbitals. In this case the problem is reduced to a set of one-unit-cell 
problems [25-27]. In molecular crystals, however, electrons are considered to be tightly bound to or 
localized on one molecule so that one-electron orbitals may be localized within a molecule rather than 
delocalized over the whole crystal. 
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reduces to just one-molecule problem under an equivalent molecular field. In 
this case it is possible to omit the suffix n if the numbering of equivalent atoms 
under the crystal symmetry operations are chosen to be the same s. 

Furthermore, if the molecules in a crystal are located on the crystal lattice 
points, the effective Fock operator should be invariant under the symmetry 
operations of the crystal point group. Then the one-electron orbitals of the 
molecule on the invarient lattice point must be the representations of the crystal 
point group. 

2. "A Simple Numerical Application 

To examine whether the one-electron orbitals in a crystal are really deformed 
from those of a free molecule, this self-consistent equivalent molecular field 
method is applied to the typical aromatic hydrocarbon crystals. In the calculation, 
the usual K-electron approximation is employed (Section III.1). For the intra- 
molecular electron repulsion integrals the K-electron correlation effect is consider- 
ed along with Little and Gutefreund's method [281, and for the intermolecular 
electron repulsion integrals the bare Coulomb potential is used. 

In Table 1, the orbital energies of coronene which has D6h geometry are shown. 
For the free molecule there are several exactly degenerated orbitals. While, for 

Table  1. Orbital energies of  coronene  

Free molecule  Crystal Crystal field splitting 
( e V )  ( e V )  ( e V )  

- - 1 6 . 0 3 7 2  a 2 ,  - - 1 6 . 0 7 9 9  

-- 1 4 . 9 8 2 9  e l 0  - -  1 5 . 0 2 9 8  

-- 1 4 . 9 8 2 9  e l 0  - -  1 5 . 0 1 8 6  0 . 0 1 1 2  

-- 13.6586 e2u - -  1 3 . 6 9 9 4  

- - 1 3 . 6 5 8 6  e2u - - 1 3 . 6 9 8 3  0 . 0 0 1 1  

- 1 3 . 3 5 2 4  a2~ - 1 3 . 3 9 3 7  

- 1 2 . 2 1 9 1  bzg - 1 2 . 2 5 7 6  

- 1 2 . 1 9 2 5  b l o  - 1 2 . 2 3 4 3  

- 1 1 . 9 0 0 4  e l 0  - 1 1 . 9 4 6 7  

- 1 1 . 9 0 0 4  e l g  - 1 1 . 9 3 9 1  0 . 0 0 7 6  

- 1 0 . 7 1 8 2  e 2 .  - 1 0 . 7 6 0 0  

- 1 0 . 7 1 8 2  e 2 ,  - 1 0 . 7 5 7 4  0 . 0 0 2 6  

- 4 . 6 7 2 6  e~o - 4 . 7 1 4 6  

- 4 . 6 7 2 5  eT0 - 4 . 7 1 1 3  0 . 0 0 3 3  

- 3 . 4 5 2 5  e~ ,  - 3 . 4 9 8 8  

- 3 . 4 5 2 5  e~ ,  - 3 . 4 9 1 2  0 . 0 0 7 6  

- 3 . 3 2 4 1  a T ,  - 3 . 3 6 2 2  

- 3 . 2 0 1 0  a ~ ,  - 3 . 2 4 2 9  

- 2 . 1 3 8 3  b~g - 2 . 1 7 9 8  

- 1.9099 eTg - 1 . 9 5 0 8  

- 1.9099 eta - 1 . 9 4 9 5  0 . 0 0 1 3  

- 0.6868 e~u - 0 . 7 3 3 8  

- 0 . 6 8 6 8  e ~  - -  0 . 7 2 2 7  0 . 0 1 1 1  

0 . 2 8 9 5  b~o 0 . 2 4 6 5  

s There is an exception in E q .  (14 ) .  In electron repulsion integrals the suffix n cannot  be omitted. 
The  possible cases are F ,  P ,  S, C ,  I ,  a n d  e. Other impossible  cases are ~b,i and Z.p,, etc. 

23 Theoret. chirn. Acta (Berl.) Vol. 26 
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t he  c r y s t a l  t h e  o r b i t a l s  d e g e n e r a t e d  in  t h e  free m o l c u l e  r e v e a l  t h e  c ry s t a l  f ie ld  

sp l i t t ing .  T h e  re -e lec t ron  d e n s i t i e s  o n  t h e  c a r b o n  n e t w o r k  a l so  s h o w  t h e  d i f f e rence  

b e t w e e n  t h e  f ree  m o l e c u l e  a n d  t h e  crys ta l .  As  s h o w n  in  T a b l e  2, t h e  re -e lec t ron  

d i s t r i b u t i o n  of  t h e  f ree  m o l e c u l e  sa t i s f ies  t h e  D6h s y m m e t r y ,  wh i l e  t h a t  of  t h e  

Table 2. Electron densities and orbital coefficients of coronene 

a b c d e f g h 

1 A' 0.9946 0.9960 0,0000 -0,0037 -0.3148 -0.3144 
2 I 1.0058 1.0073 -0,3109 -0.3109 -0.0028 0,0074 
3 H 1.0058 1.0048 -0.1580 -0.1537 0.2679 ~2698 
4 G 0.9946 0.9943 0.2727 0.2750 0.1575 0.1530 
5 F 1.0058 1.0046 0.1531 0.1493 -0.2708 -0.2734 
6 E 1.0058 1.0048 -0.1531 -0.1560 -0.2708 -0.2696 
7 D 0.9946 0.9940 -0.2727 -0.2711 0.1575 0.1599 
8 C 1.0058 1.0047 0,1580 0.1604 0.2679 0.2660 
9 B 1.0058 1.0070 0.3109 0.3111 -0.0028 -0.0001 

10 J' 0.9936 0.9942 0.0000 -0.0025 -0.2020 -0.2013 
11 L 0.9936 0.9939 0,1749 0.1763 0.1010 0.0992 
12 K 0.9936 0.9939 -0,1749 -0.1741 0.1010 0.1036 
13 A 0.9946 0.9960 0,0000 -0.0037 -0.3148 -0.3144 
14 I' 1.0058 1.0073 -0,3109 -0.3109 0.0028 0,0074 
15 H' 1.0058 1.0048 -0,1580 -0.1537 0.2679 0.2698 
16 G' 0.9946 0.9943 0,2727 0.2750 0.1575 0.1530 
17 F' 1.0058 1.0046 0,1531 0.1493 -0.2708 -0.2734 
18 E' 1.0058 1.0048 -~1531  -~1561  -0.2708 -~2696  
19 D' 0.9946 0.9940 -0.2727 -0.2711 0.1575 0.1599 
20 C' 1.0058 1.0048 0.1580 0.1604 0.2679 0.2660 
21 B' 1.0058 1.0070 0.3109 0.3111 -0.0028 -0.0001 
22 J 0.9936 0.9942 0.0000 -0.0025 -0.2020 -0.2013 
23 L' 0.9936 0.9939 0.1749 0.1763 0.1010 0.0992 
24 K' 0.9936 0.9939 -0.1749 -0.1741 0.1010 0.1036 

" Atomic position illustrated in Fig. 2. 
b Atomic position in the crystal [29], 
c 7r-electron densities of a free coronene molecule. 
a n-electron densities of coronene in the crystal. 
~ One of the highest occupied orbitals of a free coronene molecule. 
e The next highest occupied orbital of coronene in the crystal, 
g The other highest occupied orbitals of a free coronene molecule, 
h The highest occupied orbital of coronene in the crystal, 

I M 

21 2 
20 ~ ~ )  3 

1 8 ~ 5  ~ L 

1 7 ~ 6  

15 t ' - . . . / @ ~  8 
14 9 

Fig. 2. Carbon skeleton of a coronene molecule: the molecular axes M and L indicate the orientation 
of the molecule in the crystal lattice 1-29] 
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molecule in the crystal is deformed into Dzh or even into Ci, which is seen easily to 
pick up the equivalent atoms. In the free molecule there are three groups of equi- 
valent atoms, (1, 4, 7, 13, 16, 19), (2, 3, 5, 6, 8, 9, 14, 15, 17, 18, 20, 21), and (10, 11, 
12, 22, 23, 24). Whereas in the crystals a crude grouping is as follows, (1, 13), (2, 9, 
14, 21), (3, 5, 6, 8, 15, 16, 18, 20), (4, 7, 16, 19), (11, 12, 23, 24), and (10, 22), which may 
correspond to the Dzh symmetry. If the minor differences are noted, only the Ci 
symmetry can be seen. 

Another demonstration is the difference of the orbital coefficients. The highest 
occupied orbitals of a free coronene molecule (e2, degenerated orbitals) are 
compared with the highest and the next highest occupied orbitals of a molecule 
in the coronene crystal (Table 2, where the degenerated orbitals of a free molecule 
are symmetry-adapted to be the correct representations of D6h ). As can be seen 
from Table 2, the orbital coefficients for the isolated molecule and those for the 
crystal only differ by 10-1-10  -3 . However, the inclusion of these differences 
yields remarkable contributions to the values of the CI matrix elements and the 
transition moments. This, of course, affects the values of the excitation energies 
and oscillator strengths. 

In this example, coronene is a nonpolar molecule which is expected to produce 
"fairly weak molecular field". Therefore, if polar molecules such as heterocyclic 
compounds are concerned, much more serious effects is expected on the molecular 
orbitals in the crystal. 

II. The Excited States of Molecular Crystals 

In this section, the excited states of molecular crystals are described. The 
excited states are at first approximated by a single electronic configuration and 
then configuration interactions are considered. 

1. I o n i z e d  C o n f i g u r a t i o n  

When an electron is removed from the occupied orbital ~ ,  the electronic 
configuration is expressed as 

Considering the translational symmetry, the corresponding ionized state should 
be expressed as 

- ~ e  " ~p.~ 

21~k (k) = , ( 2 1 )  

-[/~N eik'~m W"~ 

where k is the crystal momentum, rm is the position vector of the m-th molecule, 
and N is the total number of lattice points. The expectation value of the energy for 
~pk(k), E k ( k ) ,  is written as 

E k ( k )  = E ~ - e k . (22) 

This equation shows that the Koopmans'  thorem [-30] holds as in the case of the 
usual SCF MO theory. 
23* 
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2. Frenkel  Exc i ton  (One Molecule  in Each Unit Cell) 

The electronic configuration of one-electron excitation within a molecule 
is given by 

Then, the localized excitation configurations for singlet and triplet are expressed as 

1 
l~p.~,.~ _ ~ (~P~,mz~ - ~P.~.mlp) (singlet) (24-1) 

and 
1 

3tp,~.,~ - 1/~ ( ~ , m ~  + ~ .~p . , j  

3tp.~,,~ = lpmk~,m~ (triplet) (24-2) 

31Pmk, ml = ll)mkfl, mb x �9 

According to the Frenkel-Pierles method [18-21], singlet and triplet Frenkel 
excitons should be written as 

l'3tPk, l ( k )=  ~ m ~ N  eik'r"l'311)mk.m 1 (25) 

and the energies are 

l"3Ek.t(k) = E ~ -t- e 1 - .z k - ~_, eik'('"' - '~)  
rrt' 

[ I ~b*,(l) q~m,,(l) - -  ~b*.k(2) q5..(2) dz~ &2 
K12 

e 2 

where r ~ z (;)=/;:: si~ 
3. Charge-Transfer Exci ton  (One Molecule  in Each Unit Cell) 

Charge-transfer exciton should be expressed as the lattice sum of translationally 
equivalent electronic configurations of electron transfer between two molecules. 
When the electron transfer vector is x = r. - r,., the corresponding charge-transfer 
exciton may he written as 

t 

1,3,Wk, l , t kx , ,  , = ~ '  ] ~  eik'rm l'31~mk, nl , (28) 

where the lattice sum runs keeping r . -  r,. = x and 

3 _ A  I- [ lPmk, nl -- [nier ff)nit~ 

31pmk,nl = A [n~i ~)nia 

1 72] �9 (~.~. r + q ~ ; , ~  r  

�9 r  r - 

(29) 
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The energies are given by 

1, 3 E i k x) = E ~ + et - ek -- ~ e ik'( . . . .  " .... k,l~, , 
rn" 

[ e2 
I q~*'k(1) q~,,~(1) ~b* +:,t(2 ) qS,., +~(2) dz~ dz 2 

Y12 
(30) 

4. Davydov  Spli t t in9 [3, 4] o f  Frenke l  Exc i ton  

In the real light absorption process, the momentum conservation law leads 
to the selection rule; 

k ~ O .  

If k equals just to zero, the excited states of the crystal having more than one 
molecule in each unit cell must be representations of the factor group. When the 
number of molecules in each unit cell is t, the excited states corresponding to the 
Frenkel exciton (I"3~Ck, Z(0)) are expressed as 

1 13 l'3~pj(k,l)= ~ ~ �9 ~p~k,,,~,6j(S), (31) 

where s denotes a site in a unit cell and 6j(s) is a coefficient ofj-th branch. The 6j(s) 
should be determined by solving the following secular equation and obtaining 
the eigen-vectors. 

det IA(k, 1)sl, s2 - E6sl, s2l = 0 , (32) 
where 

A(k ,  l)~ls ~ = ~ ~p*(k, l)~ H~p(k, l)~ dv (33) 
and 

1 
~p(k, 1)~ = ~ - ~  ~Pms,k,,,~l, �9 (34) 

The energy eigenvalue of a Davydov branch, 1.3Ej(k ' l), is also obtained from the 
solution of the Eq. (32) as following 

a'3Ej(k, I) = E ~ + el - e,k + ~ + 6i(S') l'3Mmlm,s,(k, 1) (35) 
trtt t;" 

and 

1"aM (k * 1 eZ ,~m'~', , t) = -- f. f. r ) r  ~%,,,(2) 0~,,(2) d'~l d'~2 

(36) (02) + I I ~b*~,(1) ~b,~k(1 ) ~ q~*,,,k(2) q~,,,s,,(2) dz~ dz2. 

Then, Eq. (19) leads to the Davydov splitting between thej-th branch and thej'-th; 

l '3A(k, l)jj ' = ~s [((~J(S) --(~J '(S)) Zm l '3Mllms(k '  l)] " (37) 
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5. Configuration Interaction between Excitons 

Although the excited states has been described as ~pk(k), ~k,l(k), and lpkd(k, x), 
this approximation may or may not be good to the total wave-function ~p~(k) for 
an actual electronic state i of the crystal, In case for which a combination of 
several single exciton configurations is needed, a configuration interaction calcula- 
tion should be performed by carrying out a linear variational calculation with 
~k,l(k, X) (including ~k(k) and ~pk, Z(k) in the symbol) as starting functions: 

~p~(k) = Sak, z(k, x)i Wk, l(k, X) , (38) 

determining the energy and the coefficients % ~(k, x)~ by solving a seqular equation 

det [A(k)klx, k,rx, - -  6 k l x ,  k, l ,  x ,  El = 0 , (39) 
where 

A(k)kl,,k, r*, = ~ ~P~,l(k, X) H ~Pk',r (k, x') dr. (40) 

In this configuration interaction scheme, the interactions between different k and 
also between different terms are neglected. 

6. Configuration Interaction Between Ionized Configurations 

As in the SCF theory of one molecule, the CI matrix elements between the 
ionized configurations also vanish; 

2w~(k) H 2~k,(k ) dv = 0 (k ~ k'). (41) 

7. Configuration Interaction Between the Ground Electronic Configuration 
and One-Electron Excitation Configurations 

The CI matrix elements between the ground electronic configuration and one- 
electron excitation configurations are also vanishing; 

~p~ H~p,,e,, m+ xl(k) dv = 0. (42) 

Therefore, Brillouin's theorem [31] holds in this theory. In other words, exciton 
states do not mix with the ground one. This is one of the most important points 
of this theory, since the ground state can be expressed purely as the ground 
electronic configuration. 

8. Davydov Splitting and Configuration Interaction 

If more than one molecule are there in a unit cell, it is easy to consider the 
configuration interactions. The Davydov splitting is obtainable by solving 

det[ 1' 3"Aktx, k'r ~' - (~klx, k'l" x '  El = 0, (43) 
where 

l"3Akt~,k'rx" = S 1' 3tPJ( k' l, X) Hl'3~gj(k', l', x) dr ,  (44) 

1,311)j ̀  = Z l ,  3 af t (k ,  1, x) 1, 31pj(k, l, x) ,  (45) 

and 1, 3wj(k ' l, x) are the solution of Eq. (32) or its simple version with x r 0. It 
should be noted that the configuration interactions between different Davydov 
branches are vanishing and then the excited states are labeled by branch numberj  
and another quantum-number i. 
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9. Characteristics of This Theory 

When the descriptions of the electronic states given above are appropriate 
for the actual molecular crystals, the calculations and estimations of following 
physical properties of molecular crystals become facile. (a) Stabilization energy of 
a molecule in crystallization; according to the vanishing character of the CI 
matrix elements between the ground electronic configuration and one electron 
excitation configurations, if the configuration interactions with two-electron 
excitation configuration and others are neglected, the stabilization energy of a 
molecule when it is brought into the crystal from vacuum (crystal lattice energy) 
can be calculated from the total energy of an isolated molecule and the total 
energy of the ground electronic configuration of the crystal. The former is easily 
obtainable by solving the conventional one-molecule Hartree-Fock equation 
and the latter also by solving the effective one-molecule problem. (b) Spectral shifts. 
(c) Removal of electronic degeneracy (crystal field splitting of the degenerated 
states). (d) Violation of selection rules (allowance of the forbidden transition of the 
isolated molecule in the crystal). (e) Crystal field mixing (configuration interaction 
between the configurations which do not belong to the same irreducible representa- 
tion in an isolated molecule). (f) Removal of the arbitrary character of the direction 
of the transition moment of a high symmetry molecule such as benzene and 
coronene; once the SCF orbitals for the ground electronic configuration are 
obtained, these properties from (b) to (f) are determined from the eigen-values 
and eigen-vectors of Eq. (39). Although in the usual calculation of Davydov 
splitting the direction of the transition moment of a high symmetry molecule in a 
crystal is assumed and the number of configurations for CI calculation are usually 
limited a few [-32], by this method the assumption is not needed and CI calculation 
can be carried out as in the case of a molecule, because the CI matrix elements 
are considerably simplified. Therefore, from the solution of the simple secular 
Eq. (32) or (43) it is hopeful to get more reliable results in the calculation of the 
Davydov splitting and the polarization of each Davydov branch. 

III. Semi-Empirical Methods 

In this section semi-empirical treatments are presented, because the ab initio 
calculation may not be feasible in a large system. At first ~-electron approximation 
is taken to calculate the electronic transition energies and their oscillator strengths. 
Next, all valence electron treatment is used to study the intermolecular inter- 
actions. 

1. re-Electron Approximation 

If attention is paid to the properties of mobile electrons of the system (for 
example, electronic spectra of aromatic hydrocarbons), the usual zc-electron 
approximation may be taken. Within this limitation an extension of the conven- 
tional Pariser-Parr method may be an appropriate method to test this theory. 
Now, the following approximations are taken. 
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(a) Zero-Differential Overlap Approximation 

Using zero-differential overlap (ZDO) approximation, the electron repulsion 
integrals of Eq. (17) vanish unless they are one center or two center Coulomb 
repulsion integrals; 

(npn'  p ' l m q m '  q') = 6.,., 5p, p, 6,~,,., 6q, q, 7npm, t (46) 
and 

7nprnq = ~ ~ Zn*(1) Xnp(1) ~ Z*mq(2) X,.q(2) d z l  d'c 2 . (47) 
r l Z  

(b) Pariser Approximation [33] 

According to Pariser approximation one center Coulomb repulsion integrals 
become, 

7.v.p = l.v - A.p , (48) 

where 1.p and A.p .are  the ionization potential and the electron affinity of p-th 
atom in the n-th molecule, respectively. 

(c) Two Center Coulomb Repulsion Integrals 

Two center Coulomb repulsion integrals, 7.p,,q, are evaluated by Pariser-Parr 
[34J or Nishimoto-Mataga [35] approximation. 

(d) Coulomb Integrals 

Starting from Goeppert-Mayer-Sklar approximation [-36] and neglecting all 
the penetration integrals, Coulomb integrals, Ipv, are expressed as 

Ipp W . p -  ~ '  " = 7 . p . ~  , ( 4 9 )  

nu/ 

where - W.p is the ionization potential of the valence state of np- th  atom and the 
summation is taken over the whole system except mq = n p .  

(e) Resonance Integrals 

As in the case of usual methods, resonance integrals, I~q (p r q), are considered 
to be empirical parameters. They should be determined to reproduce one-molecule 
properties. 

From the approximations, (a) and (d), the Fock matrix elements are written as 

(diagonal) f pp Wnp  d- Z (Pqcl - 1) ]) npmq 1 n n = ,n - -  7(Ppp -- 2) ?npnp (50-1) 
mq 

and 
. . 1 . ( 5 0 - 2 )  (off-diagonal) F pq = I pq - -  g P pq "~ npnq , 

where P~'q is the re-electron density on q-th atom in the m-th molecule; 
o c t  

" - - 2  Z * (51) Ppq - Ci.p Ci.q . 
i 
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It should be noted that from the ZDO approximation the excitation energy of 
a single Frenkel exciton or charge transfer exciton is expressed as 

1, 3 Ek, z (k  ' x )  - E ~ = et - ek - -  ~ Cl*m+ ~p C t ~ +  ~p 
Pq 

CkmqCk.nTm+~p,, n + ~ e ~k'(,~'-,m~ 
pqm' 

Clmp Ckrap Ckm" q Clm' q 7mpra' q (~ x, O" 

This equation shows that only the singlet Frenkel exciton has non-zero bandwidth 
as far as the ZDO approximation is valid. This feature agrees well with the experi- 
mental results [37] from which the bandwidth of triplet exciton is expected to be 
much smaller than that of singlet exciton, however, in order to calculate the band- 
width of triplet exciton the ZDO approximation should not be used. 

In the frame of the ZDO approximation, the configuration interaction matrix 
elements are written as 

A(k)k lx ,  k'l'x' = - -  E * * CI m + xp Cl 'm + xp Ck'mq Ckrrut ~m + xpmq 6x, x' 

Pq ( 5 3 )  
/ ' 3 \  

CI mp Ckmp Ck" rn' q Cl'm" q ~mpm' q (~ x, x" (~x, 0 �9 \o/ pqm' 

Eq. (53) reveals that the non-zero interactions only occur between Frenkel excitons 
and also between charge-transfer excitons, and the k-dependence appears only in 
the case of singlet Frenkel excitons. It should be noted that this vanishing character 
of the configuration interaction matrix elements extremely reduces the effort 
to calculate the electronic states; it is not needed to consider charge-transfer 
excitons when calculating Frenkel exciton states, though the mixing of C-T 
excitons with Frenkel exciton states has been previously considered [6, 38-40]. 

2. All Valence Electron Treatment 

In order to discuss the total energy of the system, it may be appropriate to use 
all valence electron treatment following the CNDO (complete neglect of differen- 
tial overlap) method proposed by Pople, Santry, and Segal [41, 42]. The expres- 
sions for the Fock matrix elements and for the total energy of the system are obtain- 
ed as in Eqs. (57) and (59), respectively, according to the following approximations; 

I"p.p.= Wnp.5~, ~ -  ~ Unp,~,p,6.,~ (p=q),  (54) 
n~p ~ 

I;.q~= ~"vqs;.~ (p ,q) .  (55) 
(npl~n'p' ls q'v') = 7.p~ 6.pu,.,p,., 6,,~, m'q'~' , (56) 

where W,, fi, and 7 are the empirical parameters and -U~p,.,p, is a parameter 
representing the potential energy of an electron on the np-th atom under the 
potential of the core of the n'p'-th atom. 

Fock matrix elements; for p = q  and p = v  
Fp,vu Wnp. + (Pp 1 n n " = - ~Ppup.) 7.p.p + ~ (PP' 7.p..p, - U.wp.),  (57-1) 

ntp' 
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for p = q  and p e r  
F n 1 n p#qv = - -  2 P puqv'~npnp , (57-2) 

and for p r q 

. . . 1 . (57-3) Fpgqv = fl pq Sp,~v - g Ppu~v 7npnq , 

where P~, is the electron density on the p-th atom in the n-th molecule, 

i P ~ = E  P" (58) p#pit �9 

It 

The total energy of the system is written as 

Etot : ppItpIt W n p l  t 1 [pn p n  l p n  2" I ',,--p#pitZpvpv 2 a pItpv } ~)npnp 
It 

+ Z E E(fl"poS;itqvPpitq~ •  27np,,~) 
- 4 - , i t 0 ~  ( 5 9 )  n pq #v 

(vcq) 

d- �89 Z ( Z n p Z n ,  p, e2/Rnpn,p,  - P"p U.p, n'p' - -  Pp'n' U.,p,, .p + Ppnp," "' 7 . p . ' p ' ) ,  
npn'p' 

(npCn'p') 

where Rnpn, p, is the distance between atoms, np and n'p'. The first term of Eq. (59) 
represents the atomic energies and the second term the binding energies of the 
bond formation. To clarify the physical meaning of the third term of Eq. (59) it is 
rewritten as 

1 ~ (E(1).p.,p, + E(2).p.,p, + E(2).,p,.p + E(3).p.,p,), 
npn' p' 

(npCn'p') 

where 

E(1).w~, " "' (60-1) = (Pp - Z.p)  (Pp, - Z.,p,) 7.p.'p', 

E(2).p.,p, -= (P"p - Z.p) (Z. , . ,  ?.p.,p, - U.p,. , . ,) ,  (60-2) 

E(3).p.,p, --- Z.pZ. ,p ,  ?.p.,p, + Z . p Z . , , ,  e2/R. . . , , ,  - Z .p  U.p,.,p, - Z.,p, U.,p,,.p. (60-3) 

E(1) is the static Coulomb interaction between the net charges on the atoms, 
which involves not only the usual electrostatic interaction between the unperturbed 
net charges as they exist in the isolated molecules but also the usual polarization 
effect and even higher-order effects. 

E(2).p.,p, is interpreted as the interaction between the net charge on the np- th  
atom and the neutral n'p ' - th  atom. 

E(3).p..p. represents the interaction between the neutral atoms, np and n'p'. 
In the CNDO/2 parametrization for Unp, n,p,(Unp, n,p,=Znp~)npn,p,), E(2) is 

vanishing and E(3) becomes Z . p Z . , p , ( e 2 / R . p . , p , -  ?.p.,p,) which is repulsive in the 
usual parametrization of ?. While, E(2) and E(3) can be attractive from the point 
of view of their physical meaning: E(2) should be replaced by the interaction 
between the net charge and the induced dipole on the neutral atom (which is of 
the form 2 2 4 9 --~1 e ct2/2R12 ) and E(3) should be replaced by "van der Waals inter- 

action" between the neutral atoms (which is of the form 3 I l I  2 ~1~2/R62)9 
2 I 2 + I  2 

except for very small distance. 
9 0 is the net charge, I is the ionization potential,  and e is the polarizability. 
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So long as the heat of formation of an isolated molecule is concerned, these 
attractive terms may be negligible. When the intermolecular interaction is taken 
up, however, these terms should not be neglected, which may be seen very clearly 
when interacting energies between two rare gas atoms are approximated in this 
way: the lack of the dispersion energy results in the absence of an attractive 
minimum. Therefore, we propose one of the most simple treatments as follows; 

(A) For the Fock matrix elements and E(2), C N D O / 2  approximation (U,p,,,f 
=ZnpTnpn,p, ) is used 1~ 

(B) For  the intramolecular interaction terms of E(3), C N D O / 2  approximation 
or M I N D O / 1  expression (the latter is of the form ZAZ~(eZ/RAB 
-- TAB) exp( - O~ABRAB)) [43] is used. 

(C) For  the intermolecular interaction terms of E(3), the pair-wise potential 
F44, 45], A/R a2 - - B / R  6 o r  A e x p ( - ~ R ) - - B / R  6 is used. 

Among the above parameters  for the all valence electron treatment, the same 
parameters used for the isolated molecules may be available except for the inter- 
molecular electron repulsion integrals 7,p,,p, (n # n') and the parameters of the 
pair-wise potential. 

According to this approximate treatment, the intermolecular interaction is 
decomposed into three parts; (l), molecular energy shifts by electron redistribution 
(positive) 11, (2) static Coulomb interactions between the net charges modified 
through an SCF procedure, which involves not only usual electrostatic energy 
but also the polarization energy (negative), (3), dispersion (or London) energy and 
intercore repulsion energy (negative under the appropriate  location of the mole- 
cules). Among these parts the first two ones can be estimated directly from the 
electron distribution determined by this SCF method, and the calculations based 
only on the pair-wise potential can be corrected easily from the two parts, (1) 
and (2). 

IV. Discussion 

1. Applicability of the Self-Consistent Molecular Field Theory 

As indicated in Section III, Brillouin's theorem holds in this theory. Therefore, 
it is clear that the ground electronic configuration does not mix with one-electron 
charge-transfer configurations, and then the charge-transfer resonance [-46, 473 
does not contribute to lowering the ground state energy. This is due to the following 
two assumptions; one-electron orbitals are expressed as the linear combination 
of atomic orbitals on one molecule and the intermolecular overlaps are neglected. 
As far as these two assumptions are used and more than one-electron excitation 
configurations are not considered, this theory should be only applicable to the 

~0 In the calculation of hydrogen bond, the induction term E(2) may play an important role. 
1 In Eq. (59) the first and second terms, and the third term for n = n' represent the molecular 

energies. Although these terms are the same expression of the molecular energies as that of the system 
of isolated molecules, the electron distribution of the molecules in the aggregate will be different from 
that of isolated molecules. Furthermore, the equilibrium positions of nuclei in the former may be 
distorted from those in the latter. Therefore, the molecular energies in the aggregate should be shifted 
from those in the isolated system. This molecular energy shifts may be positive, since the molecular 
energies are minimal in the isolated system. 
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systems in which each molecule  is a lmos t  pure ly  neut ra l  or a lmos t  pure ly  ionic 12, 
and  not  app l i cab le  to the systems of in te rmedia te  charge- t ransfer  13. 

Fur the rmore ,  if an in t e rmolecu la r  over lap  is too  large to neglect, there  should  
be an in t e rmolecu la r  bonding ,  and  then it is not  a p p r o p r i a t e  to use the local ized 
one-e lec t ron  orb i ta l s  on a molecule.  Therefore,  this theory  is only  app l i cab le  
to the system in which there  is no large over lap  or  no chemical  bond ing  between 
the molecules.  

2. Problems Arising from Convergence 

On the numer ica l  app l ica t ion ,  there  are two convergence  p rob lems  pecul ia r  
to the S C F  ca lcu la t ion  on infinite systems 14. The first is assoc ia ted  with the  
divergence of the in tegra l  sums over  an infinite lattice. W h e n  the a t t rac t ive  te rms 
and  repuls ive te rms are  s u m m e d  separa te ly  in the F o c k  mat r ix  elements,  bo th  
of the  pa r t i a l  sums are  divergent .  If these two sums are combined ,  the resul t ing 
e lements  are at  best  cond i t i ona l ly  convergent .  More  pricisely, the divergence 
arises f rom the infinite sums of the  in tegrals  which d iminish  not  more  rap id ly  
than  1/r 2, therefore,  the cond i t i on  of convergence  is due to the process  of the  next 
sum in the  F o c k  mat r ix  e lements  (Eq. (50)); 

(Pp, - Z,,p,) 7n;n'p' 
n i p  ' 

(n" p '  ~ rip) 

If  this sum is t aken  over  the  charges  on a molecule  and  then over  those  on ano the r  
molecule,  this  p rocedu re  m a y  lead  to convergence.  

A l though  there  is no clear  p r o o f  of this predic t ion ,  it is very hopeful,  since the  
electr ic field i nduced  by a neu t ra l  molecule  in the d is tance  is in the first a p p r o x i m a -  
t ion  to  be tha t  by  the  p e r m a n e n t  d ipo le  of the molecule.  Fu r the rmore ,  if m a n y  
e lec t ron  cor re la t ions  are  inc luded  in 7, 7 m a y  be a die lectr ical ly  screened C o u l o m b  
po ten t ia l  and  the value of V m a y  reduce  much  more  rap id ly  with r than  tha t  of 
ba re  C o u l o m b  potent ia l .  

The  second p r o b l e m  is a s soc ia ted  with the infinite number  of S C F  equat ions ,  
Eq. (18). A l t h o u g h  the S C F  p rocedu re  canno t  be done  in real computa t ion ,  it is 
i m p o r t a n t  to know what  n u m b e r  of equa t ions  to  be solved in o rder  to ob ta in  

12 To apply this theory to almost purely ionic radical salt crystals an open-shell treatment is 
needed. 

13 Even if the intermolecular charge transfer is not neglected, this theory is applicable to the 
special systems in which the intermolecular charge transfer chains do not extend over the fairly large 
region of a hundred molecules, a thousand molecules, or all over the crystal. For a simple example, two 
interacting molecules such as an electron donor-acceptor pair or a hydrogen-bonded dimer in the 
aggregate are considered to be "one molecule" so that the one-electron orbitals may be expanded in 
the atomic orbital bases of these two molecules. In such a case, this SCF theory is applicable to it with 
no modification. 

14 Another infinite sum is needed on calculating excitation energies [15]. In Eq. (52) the lattice 
sum for a Frenkel exciton with k = 0 becomes 

ge Y, Clmv Ckm, C~m,q Cl~,q ~m~,q. 
m' pq 

The convergence character of this sum may be seen as the same way as the first problem because 
C*pCk,.. and Ck,~,qCz~, q can be interpreted as the charge on the mp-th atom and that on the m'q-th 
atom, respectively. 
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sufficient convergence. This question is closely correlated with another  one, what  
number  of terms are to be summed in the Fock  matrix elements. If the long-range 
intermolecular  interactions can be neglected, the SCF orbitals may be determined 
by the short-range terms. Thus, it can be concluded that as far as the convergence 
of the sum of Fock  matrix elements are fulfilled in fairly short-range, the number  
of secular equat ions to be solved becomes finite and sufficiently small for real 
computat ion�9 

In molecular  crystals, the second difficulty disappears automatical ly because 
of the effective one-molecule problem under the equivalent molecular  field. 
Moreover ,  the first one is also removed:  the well-known methods  for the evaluation 
of  Madelung  sums [48, 49] are available, since the translational symmetry  makes 
it possible to replace the lattice sum by the Fourier-integral  or the reciprocal 
lattice sum. 

The authors express to Prof. Y. Harada for useful suggestions. 

Appendix 

The energy of the g round  electronic configurat ion is expressed as follows in 
terms of the orbital coefficients and atomic integrals defined in Section I. 

o c t  

E ~  ~ C* C l" --inp!a il~qv -plaqv 
ni p#qv 

oct  

+ Z Z (2C,,p,, C,,qv C~,,p,,, Cjma'~') 
nimj pltqvp' #' q' v' 

�9 [(np#nqv [mp'ffmq'v') - �89 mp'#'nq v)]. 
According to the variat ion principle, the following equat ion should be fulfilled 
for an arbi t rary variat ion set of the orbital coefficients; 

~ (E~ ~i 2e,i) =O, 

where the variat ion parameters  e.,i are in t roduced based on the or thogonal i ty  
condit ions (Eq. (11))�9 For  the variat ion of * Ci,p,, Eq. (13) can be easily derived. 
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